ACE Instrument Concepts: Additional Requirements for Clouds*

S. Platnick (GSFC), S. Ackerman (U. Wisc.), R. Marchand (U. Washington), D. Starr (GSFC), and ACE Cloud Working Group

1. Wide vs. Narrow Swath Rationale
2. Wide Swath Infrared Imagery - providing present-day EOS/A-Train cloud capabilities
3. Wide Swath Microwave/Sub-millimeter Imagery

* Further details in ACE Cloud White Paper, Winter 2010
A Look at Decadal Survey’s
ACE Text (part of “Climate Mission 1”)
Chapter 9: CLIMATE VARIABILITY AND CHANGE

• DS Climate Panel had the vision of a full A-Train complement for Cloud-Aerosol studies.

 p. 270: “The mission could fly in formation with the 1:30 NPOESS satellite (C-1) … Combined with the NPOESS instruments, the instrument package of CM1 would mimic the relevant capabilities of the A-Train (Aqua MODIS, Aura OMI, CloudSat, CALIPSO, POLDER, and Glory) while substantially advancing the technology …”

• DS panel never intended to have a cloud mission w/out a full complement of IR and VNIR capabilities.

 p. 273: “… the ideal configuration would be to fly CM1 at the same orbit altitude as the NPOESS spacecraft (about 820 km) … to take advantage of the VIIRS … One technical difficulty with this payload is that an 820-km orbit is a challenge [for active sensors]. A lower orbit would be feasible if the VIIRS visible and IR bands could be included in the polarimeter.”
DS Weather Panel also articulated the need for a cloud-aerosol mission, emphasizing a hydrological focus.

p. 320: “… Some mission concepts were regarded as having high priority by several panels, including the weather panel. **This panel’s top priority is a science mission to understand the linkages among clouds, aerosols, and Earth’s hydrologic cycle.**”

Weather panel recognized the need for submillimeter and IR observations in addition to ACE-like sensors.

p. 320: “Sensors: Multiwavelength aerosol lidar, Doppler radar, spectral polarimeter, A-band radiometer, **submillimeter instrument, IR array.** … the primary instrument measures at submillimeter wavelengths (183-874 GHz) for ice path”
Wide + Narrow Swath Imagery for Clouds (1)

“Two-swath” approach:

- **Narrow Swath**
 - Consisting of nadir pointing active sensors and polarimeter w/high-resolution imagery (~100 m) in selected spectral channels along a narrow swath of order ~100 km.
 - High resolution => resolve spatial scales smaller than those of radar footprint or effective lidar averaging length to assess inhomogeneities.

- **Wide Swath**
 - Lower spatial resolution observations from a variety of passive systems (polarimeter, IR, submm/μwave) over a ~1500 km wide swath; ~500 m to 1 km spatial resolution in solar/IR, ~10 km in submm.
 - Also provides full spectral/polarimetric capability for synergistic active cloud retrievals along the nadir curtain.
Wide + Narrow Swath Imagery for Clouds (2)

Wide swath IR/sub-mm rationale:

- **Cloud-Aerosol synergy:** Complement polarimeter/imager swath for aerosols. Off-curtain aerosol retrievals ought to be accompanied by best cloud retrievals possible for process and correlative studies.
- **Process-oriented case studies and events of interest.** Allow for the supporting such studies, and enabling science on transient large-scale geophysical events/phenomena.
- **Context for Curtain Measurements:** Passive observations across a range of horizontal scales can capture the larger cloud, aerosol, and meteorological context for which the specialized curtain retrievals are obtained.
- **Pathway to Model Improvement:** Retrievals on wide swath scales enable cloud assimilation which we envision as a pathway to model improvement (assimilation analysis provides meaningful insight into physical processes and model diagnostics).
Infrared Imagery (1)

Can’t comprehensively assess clouds without a minimal IR capability.

• 4+ decades of experience in using IR for:
 – cloud detection, high cloud property retrievals (emissivity, radiative temperature/pressure, cirrus optical properties), phase, LW radiation budget studies, water cloud particle size (3.7 µm), and synergy with solar reflectance imagers and other instruments.

• IR-derived cloud data sets include:
 – ISCCP (IR window), HIRS (sounding channels), AVHRR PATMOSx (2 IR window channels), MODIS (3.7, 8.5 µm, window (2), 13-14µm CO$_2$ channels), AIRS (3.7-15 µm), CALIPSO/IIR (8.5, 11, 12 µm). Future: NPP/JPSS (VIIRS, CrIS).

• Information content is complementary to solar reflectance/ polarization and active sensors (not equivalent), as well as submm/µwave ice and liquid water path capabilities.
Infrared Imagery (2)

• Needs
 – Requirements: 3.7, 8.5, 11, 12 μm spectral channels; ~1km spatial resolution. Represents a bare-bones and limited capability compared with current/future IR imagers.
 – Goal: CO$_2$ channels (13-15 μm, MODIS-like)

• Instrument studies (w/out 3.7 μm band): SIRICE Infrared Cloud Ice Radiometer (IRCIR), IDL concept study, 2004; U. Wisconsin/SSEC study: ~2005
 – Pushbroom, ~1500 km swath
 – Uncooled microbolometer FPA
 – Lightweight (~10 kg), low power (~30W)
 – Multiple cameras/view options (TBD)
 – Inexpensive (~$30M)
 – Heritage: Infrared Spectral Imaging Radiometer (ISIR) flown on STS-85 (1997), developed under SBIR; Compact Infrared and Visible Imagers (CoVIR), IIP-98 task.
Submm/µwave Imagery (1)

- Submillimeter/millimeter retrieval capabilities:
 - Provide accuracies of ~25% cloud ice water path (IWP) and median mass equivalent particle size (Dme).
 - Submm will improve radar-derived IWC(z) accuracy by providing overall IWP constraint on the profile retrieval.
 - Greater dynamic range of ice mass when submm flown with IR. Combined submm + IR Bayesian algorithms have been developed/published (F. Evans).

- Microwave imager capabilities:
 - Provides LWP (complement to submm IWP), precipitation estimates, SST, column water vapor, ocean surface winds
At sub-mm frequencies:

- lower atmosphere opaque due to strong H$_2$O absorption, upwelling vapor emission scattered by ice particles w/brightness temperature depressions proportional to the IWP
- sub-mm frequencies sensitive to the particles containing most of the ice water mass; different frequencies can be used to quantify an effective mass-weighted size.
Example CoSSIR retrievals from CRYSTAL-FACE

top, middle figures: IWP and median mass diameter retrievals (with error bars), respectively.

bottom figure: Vertically-integrated radar reflectivity compared to forward model from CoSSIR retrievals.

Submm/μwave Imagery (4)

• Submm instrument concept: SM4 (SIRICE IDL study, 2004)
 – Conical scanning, 10 km spatial resolution, ~1500km swath
 – 12 channels/6 receivers (183 - 874 GHz)
 – 134 kg, 182 W, 211 kbps, ~$75M (approx. FY11 $’s)

• Submm heritage
 – MLS on Aura (limb scanning); CoSSIR aircraft instrument.
 – ESTO investment: IIP-08, ACT-05 (2 tasks)

Sideband Channels (GHz)

- 183.31 ±1.5, ±3.5, ±7.0
- 325.25 ±1.5, ±3.5, ±9.5
- 448 ±1.4, ±3.0, ±7.2
- 640 ±6.7 H
- 640 ±6.7 V
- 874.4 ±6.7
ACE Instrument Concepts:
Additional Needs for Clouds – Summary

1. Legacy synergy
 • Infrared Imager:
 - recognized explicitly in DS Climate Panel text
 - low cost uncooled bolometer FPA approach (IRCIR) covers part of
 the spectral requirements
 • VNIR/SWIR spectral/spatial capabilities for cloud studies
 - very close to polarimeter requirements, close for OES

2. Additional synergy with microwave/sub-millimeter imagery
 • Recognized explicitly in Weather/App. Panel text
 • IDL sub-mm study completed in 2004

3. A-Train legacy and formation flying
 • Recommendation: programmatic-level discussion w/international
 partners and other DS/Climate missions on formation flying in support
 of clouds-aerosols-hydrology science [see “extra” slide for missions of
 interest] and/or other DS science.
Extras
Some ACE-related Missions of Interest

Solar reflectance imagery/polarimetry:

• Mission for Climate and Atmospheric Pollution (MCAP): polarimeter, CSA APOCC (Atmospheric Processes Of Climate and its Change) program, J. Drummond

Precipitation:

• SnowSat (35/94-GHz Doppler cloud radar): CSA APOCC, P. Joe
• AMSR2/GCOM-W2, -W3: JAXA

Other:

• EarthCare operations precede current ACE launch window: 2014, ~400 km, no wide-swath sensors (MSI: 150km swath, 500m, 7 channels: 0.67, 0.86, 1.65, 2.21, 8.8, 10.8, 12 μm)
• JPSS: as with NPP, flies at 825 km orbit. No plans for formation flying.

Note: APOCC missions under study (no down-select yet) but would nominally launch before 2020.
VNIR/SWIR Needs for Clouds

- Ocean Ecology Sensor (OES) will be very useful for clouds; ocean team has been very helpful in reaching out to cloud team.
- However, OES doesn’t meet spatial resolution and some spectral requirements. Cloud group minimum requirements beyond OES requirements:
 - **Spectral**: missing water vapor at 1.38/1.88 μm (for cirrus detection, ice cloud properties). Potentially a 2nd 1.6 μm (or 2.2 μm) window channel to assist in cloud phase discrimination. With O₂ A-Band capability, of less importance is 0.94 μm requirement (column water vapor, multilayer detection).
 - **Spatial**: OES 1km resolution vs. 500 m (and ~100 m for selected narrow swath channels).
 - **Pointing**: Some latitudinal gaps due to off glint pointing, but imager expected to stagger the tilt N&S such that there are no gaps in weekly averaged binned data.

- Cloud group Minimum Requirements (MR) are very close to Polarimeter requirements. Additional discussions needed regarding:
 - Swath coverage w/complete multiangle/polarimetry observations.
 - Some concerns about spectral coverage and spatial resolution.